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Sensitivity analysis is used to find the key variables which have significant effect on system 
reliability. For a product in early design stage, it is impossible to collect sufficient samples. 
Thus, the probabilistic-based reliability sensitivity analysis methods are difficult to use due 
to the requirement of probability distribution. As an alternative, interval can be used because 
it only requires few samples. In this study, an effective global non-probabilistic sensitivity 
analysis based on adaptive Kriging model is proposed. The global accuracy Kriging model is 
constructed to reduce overall computational cost. Subsequently, the global non-probabilistic 
sensitivity analysis method is developed. Compared to existing non-probabilistic sensitivity 
analysis methods, the proposed method is a global non-probabilistic reliability sensitivity 
analysis method. The proposed method is easy to use and does not require probability dis-
tribution of the input variables. The applicability of proposed method is demonstrated via 
two examples.
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1. Introduction

In reliability engineering, sensitivity analysis is widely used to find 
the key variables that have significant effect on system reliability [1, 
13]. In general, reliability sensitivity can be classified into two types 
[11, 17]: local reliability sensitivity and global reliability sensitivity.

Nowadays, probability distribution is often used to represent ran-
dom parameter, and most of probabilistic-based reliability sensitiv-
ity analysis methods have been reported. For example, Proppe [14] 
presented a local reliability-based sensitivity analysis based on mov-
ing particles method. Cadini et al. [1] proposed an adaptive Kriging 
importance sampling-based method for global sensitivity analysis. 
Dubourg and Sudret [2] proposed Kriging model-based importance 
sampling for reliability sensitivity analysis, which can be used in 
reliability-based design optimization. It should be noted that many 
samples are required to accurately determine a probability distribu-
tion. However, it is impossible to collect enough samples for a product 
in early design stage. As an alternative, interval or convex model can 
be used because they only require a few samples, which are useful 
for a product in early design state. If input variable is represented 

using interval or convex model, the sensitivity problem is called as 
non-probabilistic sensitivity in this study. Until now, a few research 
efforts for non-probabilistic sensitivity analysis have been reported. 
For example, Li et al. [9] presented the definition of non-probabilistic 
sensitivity analysis, and optimization-based method is suggested to 
solve complex non-probabilistic sensitivity problems. Xiao et al. [19]
proposed a non-probabilistic sensitivity analysis method under con-
sidering correlations among interval variables. Qiao et al. [15] pro-
posed a non-probabilistic reliability sensitivity analysis method based 
on convex model. Wang et al. [18] used non-probabilistic sensitivity 
analysis for optimization of aeronautical hydraulic pipelines. 

It should be noted that existing non-probabilistic reliability sen-
sitivity methods are, generally, local reliability sensitivity methods. 
Moreover, performance functions in real applications are typically im-
plicit functions involving time-consuming simulations. Subsequently, 
non- probabilistic reliability sensitivity analysis involving simulation 
is extremely computationally expensive. To address these issues, a 
global non-probabilistic reliability sensitivity analysis based on adap-
tive Kriging model is proposed in this study. Kriging models have 
been widely used in reliability engineering in recent years[3, 12, 20]



Eksploatacja i Niezawodnosc – Maintenance and Reliability Vol. 24, No. 4, 2022 613

[21, 22]. Therefore, to significantly reduce computational burden for 
systems with time-consuming simulations, the global accuracy Krig-
ing model is constructed adaptively that can be used to replace simu-
lations. Subsequently, a global non-probabilistic reliability sensitivity 
analysis method is developed based on Sobol’s sensitivity indices [16] 
for systems with interval variables.

This paper is structured as follows. Section 2 reviews of existing 
non-probabilistic reliability analysis. Section 3 presents a global non-
probabilistic sensitivity analysis method in detail. Two numerical ex-
amples are used to demonstrate the applicability of proposed method 
in section 4. Section 5 is the conclusion.

2. Review of existing non-probabilistic reliability 
analysis

2.1.	 Non-probabilistic reliability analysis
Interval variable can be used to represent random parameter. An inter-
val variable is expressed as:

	 X X X X X X XI l u l u= 



 = ≤ ≤{ }, 	 (1)

where lX  and uX  are, respectively, the lower and upper bounds of 
interval variable. The midpoint and radius of IX  can be, respectively, 
calculated as follows:

	 ,
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= = 	 (2)

Suppose that the performance function of a system is Z g I= ( )X
with interval variables X I I I

n
IX X X= ( )1 2, , , , then the system re-

sponse Z  is also an interval variable. The non-probabilistic reliability 
index is defined as follows [8]:

	 η =
Z
Z r

	 (3)

Based on Eq. (3), it shows that if  1η > , the system is safe; if  

1η < − , the system is failure; 1 1η− ≤ ≤  means that system is in un-

certain state. Eq. (3) can be rewritten as:
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where ,u lZ Z are, respectively, the lower and upper bounds of system 

response. To accurately calculate ,u lZ Z , the following optimization 

model can be solved:
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In general, for a system with multiple components, the system non-
probabilistic reliability index can be computed as :
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where iη  is non-probabilistic reliability index of the thi  compo-
nent. 

2.2.	 Non-probabilistic sensitivity reliability analysis
Reliability sensitivity analysis is useful because it can be used to find 
the key variable that has significant effect on system reliability. Tradi-
tionally, non-probabilistic reliability sensitivity is defined as follows 
[9]:

	 , rX X
η η∂ ∂ 

 ∂ ∂ 
	 (7)

From Eq. (7), it is easy to know that existing non-probabilistic reli-
ability sensitivity is a local sensitivity measure. Note that there is no 
direct relationship between non-probability reliability index η and 

interval parameters X and rX . Thus, analytical solution for the non-
probabilistic reliability sensitivity is, generally, impossible, except for 
some special cases such as performance function Z g I= ( )X  is a 
linear function. To approximately estimate non-probabilistic reliabil-
ity sensitivity in Eq. (7), the finite difference technique can be used 
as:
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where X∆ and rX∆ are very small variations of interval midpoint 
and radius, respectively. Note that for system non-probabilistic relia-
bility sensitivity problem, Eq. (7) can be revised as follows:

	 ,sys sys
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	 (9)

Using the finite difference technique, Eq. (9) can be calculated as 
follows:
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3. Proposed global non-probabilistic sensitivity analy-
sis method

3.1.	 Global non-probabilistic sensitivity analysis
Since non-probabilistic reliability sensitivity in Eq. (7) is a local sen-
sitivity measure, a global non-probabilistic reliability sensitivity anal-
ysis method is proposed in this study. Based on Sobol’s indices[16], 
the proposed global non-probabilistic reliability sensitivity measure 
for a component is defined as:
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where Var I
jj xX

η  
 

 is computed as follows:
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where k
jx

η is a non-probabilistic index under interval variable 

I k
j jX x= , and 
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= ∑ . In this study, the range of interval vari-

able I
jX  is evenly divided into 1N −  sub-intervals. Subsequently, the 

N  samples can be determined, i.e., 1 2 1l N N u
j j j j j jx x x x x x−= ≤ ≤ ≤ ≤ =
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where k
jx  is the thk  sample. To ensure the accuracy, the N is sug-

gested as 50N ≥ . From Eq. (11), it is easy to know that the value of 

I
jX

S belongs to interval [ ]0,1 . It should be noted that the non-proba-

bilistic reliability index under configuration of interval variable, i.e., 
k
jxη , is not a number in some special cases. Subsequently, k

jxη
should be ignored to calculate global component non-probabilistic re-
liability sensitivity.

Based on Eqs. (6) and (11), global non-probabilistic reliability sen-
sitivity of a system can be calculated as follows:

	

1

Var

Var

I
j j

I
j

i

sysX x
nX

sys xi

S
η

η
=

 
 
 =
 
 
 

∑
	 (13)

3.2.	 Construct global accuracy surrogate model based on 
Kriging

In real applications, the system performance functions { }1 2, , , mg g g  
may implicit functions involving time-consuming simulations. Using 
Eqs. (11) and (13) for calculating global non-probabilistic reliability 
sensitivity is extremely computationally expensive. For example, us-
ing Eq. (11) for calculating component global non-probabilistic relia-
bility sensitivity. Suppose that the average number of simulations for 
calculating k

jx
η is C , then the total number of simulations for global 

non-probabilistic reliability sensitivity analysis of all input variables 
is C N n× × . It is easy to know that the computational burden is ex-
tremely huge which is impossible in real applications. To reduce com-
putational burden, a global accuracy Kriging model in whole uncer-
tainty space is constructed to replace time-consuming simulation. 
Kriging is a Gaussian process[10], for an unobserved point x , the 
kriging prediction is a normal random variable with mean value 
µ
g x( )  and Kriging variance σ

g
2 x( )  as follows:

	 


 

g g gx x x( ) ( ) ( )



 µ σ, 2 	 (14)

For more detailed information of Kriging, please see Ref. [4]. To 
effectively construct a Kriging model with global accuracy, the best 
added training sample can be determined as follows[7]:

	 x x
X x X

* arg max= ( )
≤ ≤l u

gσ


2
	 (15)

From Eq. (15), finding *x  is an optimization problem within 
the whole uncertainty space. Existing intelligent optimization al-
gorithms such as genetic algorithm can be used to solve the prob-
lem, which is complex. In this study, a large number of candidate 

samples are randomly generated in whole uncertainty space, i.e., 
x x x xc Nc{ } = { }1 2, , , . Subsequently, σ

g c
2 x{ }( )  are available 

based on current Kriging model. The *x  can be approximately de-
termined as follows:

	 x x* arg max= { }( )σ
g c
2 	 (16)

To terminate the process of selecting training samples, the follow-
ing stopping strategy is adopted:

	 ( )Rmse test ξ≤ ∆x 	 (17)

where ( )Rmse testx  is the root mean square error, testx  are randomly 
generated test samples with the number of 10 n× , and ξ∆  is defined 
as:

	 ( )E testgξ λ  ∆ = ×  x 	 (18)

where 


 denotes absolute operator, ( )E 
 denotes expectation, and 

λ is a small positive number such as 0.0001λ = . ( )Rmse testx  is cal-
culated as:

	 ( ) ( ) ( ) 2

1
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i i

test test test test
i

g g n
=
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where i
testx  is the thi  test sample, 10testn n= ×  is the number of 

test samples. When the stopping strategy is met, the final surrogate 
models { }1 2, , , mg g g  


 are obtained for system performance func-

tions { }1 2, , , mg g g .

3.3.	 Summery of proposed method 
Compared to existing non-probabilistic sensitivity analysis methods, 
the proposed method provides a new way for global non-probabilistic 
sensitivity analysis. The details of proposed method for system global 
non-probabilistic reliability sensitivity analysis can be summarized in 
Table 1. 

Table 1.	 Algorithm of proposed method

1. Generate a small number of training samples { },s sx z , where 

( )1 1, , ,s s s s
n= x x x x  and ( )1 2, , ,s s s s

m= z z z z , and build initial 

surrogate models.

2. Select training sample using Eq. (16) to refine each surrogate model 
until stopping strategy in Eq. (17) is met.

3. Global accuracy surrogate models are denoted as ( )1 2, , , mg g g=   
g .

4. for 1j =  to n , do

	
I
jX

 
is evenly divided into 1N −  sub-intervals, and 

		  N  samples can be determined as 1 2 1l N N u
j j j j j jx x x x x x−= ≤ ≤ ≤ ≤ = .

	 for 1k = to N , do

		  Calculate non-probabilistic index , k
jsys x

η  under interval variable	
		  I k

j jX x=

	 end for
	 Calculate global non-probabilistic reliability sensitivity I

jX
S   

		  using Eq. (13).
end for
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4. Numerical examples 
In this section, two numeral examples are investigated to show the 
proposed method. The first is a beam with a single failure mode 
and five interval variables. The second is a parallel system with two 
highly nonlinear performance functions. To demonstrate the proposed 
method, all performance functions are viewed as implicit functions to 
construct surrogate models.

 
Example 1–a cantilever with single failure model
A cantilever, as shown in Fig. 1., is considered. The performance 

function is defined as [9]:

	 ( )1 2 1 2 1 1 2 2, , , ,cr crg m p p b b m p b p b= − −

where crm  is critical limit bending moment, 1p  and 2p  are two ap-
plied loads, 1b  and 2b  are the length between applied loads and end 
point. All parameters are interval variables and the detailed informa-
tion is shown in Table 2. 

Fig. 1 A cantilever
In this example, 10 samples are used to build initial surrogate 

model, 0.0001λ = , and the number of test samples is 50. Moreover, 
57 training samples are used to construct a global accuracy Kriging 
model. For global non-probabilistic reliability sensitivity analysis, 
each interval is evenly divided into 100 subintervals, respectively. 
The results of global non-probabilistic reliability sensitivity from pro-
posed method are shown in Table 3. 

In Table 3, the results with “*” are from the proposed method with 
true performance function. Based on Table 3, the results are very ac-
curate compared to reference values based on real performance func-
tion. The proposed method provides a new way to measure global 
non-probabilistic reliability sensitivity. It is easy to know that the vari-

able crm  has a significant effect on system reliability, which should 
pay more attention in design stage. Note that the proposed method is 
quite different to local non-probabilistic reliability sensitivity method. 
The local method provides local sensitivity of midpoint and radius 
of interval variable, whereas the proposed method provides a global 
non-probabilistic reliability sensitivity of interval variable in whole 
uncertainty space. In this example, the total number of original func-
tion call is 57+50=107. 

Example 2–a parallel system with two failure modes
Suppose that a parallel system with two failure modes, and the cor-

responding performance functions are defined as follows:
( ) ( )
( ) ( )

2
1 1 2 1 2

2
2 1 2 1 1 2

, 2 2

, 3 2 4

g X X X X

g X X X X X

 = + − −

 = − − +

1 2,X X are two independent interval variables, [ ]1 0.5,1X ∈ , and

[ ]2 1,2X ∈ .

In this example, 10 samples are used to build initial surrogate mod-
els for 1g  and 2g , respectively. 0.0001λ = , and the number of test 
samples for both is 20. To construct global accuracy Kriging models 
for 1g  and 2g , the number of training samples are 14 and 13, re-
spectively. For system global non-probabilistic reliability sensitivity 
analysis, each interval is evenly divided into 100 subintervals, respec-
tively. The results from the proposed method are shown in Table 4. 

In Table 4, the results with “*” are from the proposed method with 
true performance functions. Based on Table 4, the results are very ac-
curate compared to reference values based on real performance func-
tions. The proposed method provides a new way to measure system 
global non-probabilistic reliability sensitivity. It is easy to know that 
the variable 1X  has a significant effect on system reliability, which 
should pay more attention to control it in design stage. In this exam-
ple, the total number of original function calls are 34 (14+20) and 33 
(13+20), respectively. 

5. Conclusions
Sensitivity analysis is used to find the key variables which have sig-
nificant effect on system reliability. For a product in early design 
stage, it is impossible to collect enough samples due to the limitations 
of time and resources. Thus, the probabilistic-based reliability sensi-
tivity analysis methods are difficult to use because many samples are 
required to accurately determine a probability distribution. Existing 
non-probabilistic reliability sensitivity methods are local sensitivity 
methods. To address the issue, a new global non-probabilistic reliabil-
ity sensitivity method is proposed in this study. Surrogate models with 

5. Sort global non-probabilistic reliability sensitivities

S S S
X X XI I

n
I

1 2
, , ,{ }  in descending order.

Table 2.	 Detailed information of interval variables

Interval variables 1p (kN) 2p (kN) 1b (m) 2b (m) crm (kN.m)

Lower bound 4.4 1.7 1.8 4.5 32

Upper bound 5.6 2.3 2.2 5.5 40

Table 3.	 Global non-probabilistic sensitivities of example 1

Sensitivity crmS
1pS

1bS
2pS

2bS

Proposed method
0.8220 0.0423 0.0300 0.0732 0.0325

0.8214* 0.0426* 0.0298* 0.0734* 0.0328*

Table 4.	 Global non-probabilistic sensitivities of example 2

Sensitivity 1XS
2XS

1XS
2XS

Proposed method 0.9537 0.0463 0.9541* 0.0459*
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global accuracy are constructed with adaptive manner to reduce over-
all computational burden. Subsequently, time-consuming simulations 
can be replaced by constructed surrogate models, which are much 
cheaper than simulations. Numerical examples have demonstrated the 
applicability of proposed method, which provides a new way for glo-
bal non-probabilistic reliability sensitivity analysis. 

Compared to probabilistic-based global reliability sensitivity meth-
ods, the major advantage of proposed method is that the distribution 
type of input variables is not required. Note that the proposed method 
is different to local non-probabilistic reliability sensitivity methods. 
The local method provides local sensitivity of midpoint and radius of 

interval variables, whereas the proposed method provides global non-
probabilistic reliability sensitivity of interval variables in whole un-
certainty space. Moreover, the proposed method only considers main 
effect of input interval variables. 
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